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Abstract

If K is an algebraically closed field, then it is known that K[y] has the coefficient assignment
property. Conversely, suppose that the field K has characteristic zero and contains the primitive
nth roots of unity for all positive integers n. If K[y] has the coefficient assignment property,
then X is closed under taking nth roots for all positive integers n.

Let R be a commutative ring with (4, B) an n-dimensional controllable system over R.
Thus, 4 is an n X n matrix, B is an n X m matrix, and the R-module generated by the
columns of the matrix [B,4B,...A" 'B} is R".

If R is a field, then the controllability of a system is equivalent to any of the
following three conditions:

1. There exists a matrix F and a vector v such that Bv is a cyclic vector for the matrix

A+ BF.

2. For each monic, nth degree polynomial f(x) € R[x], there exists a matrix F such

that the characteristic polynomial of 4 + BF = f(x).

3. For each collection {ry,...,r,} of elements of R, there exists a matrix F such that
the characteristic polynomial of 4 + BF = (x — r1)---(x — rp).

Over an arbitrary ring, these are no longer equivalent. Instead, for a system (4, B)
over R, we have that (1) = (2) = (3) and that each of these conditions implies
the controllability of the system. A ring R is called an FC-ring if condition (1) is
satisfied for all controllable systems over R. A ring R is called a CA-ring if condition
(2) is satisfied for all controllable systems over R. A ring R is called a PA-ring if
condition (3) is satisfied for all controllable systems over R. Thus, any FC-ring is a
CA-ring and any CA-ring is a PA-ring.
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The most general class of rings having the FC-property is the class of local-global
rings [1]. In a very real sense, these rings behave like local rings and essentially have
the FC-property because fields do. The first nontrivial example of a ring having the
CA-property but not the FC-property was given in [2, 10] where it was shown that if
K is an algebraically closed field and y is an indeterminate, then K[v] is a CA-ring
and if the characteristic of K is different from 0 , then K[y] is not an FC-ring. (This
work was motivated by the problem of deciding whether or not the ring C[y] is an
FC-ring if C is the field of complex numbers.)

Now, it was shown in [3] that if R is the field of real numbers, then R[y] is not a
CA-ring. These facts taken together suggest the following question:

For which fields K is it true that K[y] is a CA-ring?

In this paper, we establish some necessary conditions on K in order for K[y] to be
a CA-ring. Even this small step requires considerable effort and leads us to believe
that the problem is a difficult one.

Our result is the following.

Theorem 0.1. Let K be a field with y an indeterminate over K. Let q be a prime
integer different from the characteristic of K and suppose that K contains all gth
roots of unity. If K[y] is a CA-ring, then K is closed under taking qth roots; that
is, the map ¢ : K — K defined by ¢(x) = x9 is surjective. In particular, suppose
that K is a field of characteristic 0 and that for each positive integer n, K contains
all the nth roots of unity. If K[y] is a CA-ring, then for each positive integer n, K
is closed under taking nth roots.

Proof. f w e K, # 0 ,seta=(y— 1) - (y—w)and f = y+a- f(y), for
f(y) some polynomial in K[y] to be determined later. We will apply the following
surprisingly deep technical result.

Lemma 0.2. Let k be a field with y an indeterminate over k. Let q be a prime integer
different from the characteristic of k . If o €k, #0, set . = (v — 1)~ - (y — w)
and B = y+a- f(y), for f(y) some polynomial in k[y). If « is a qth power modulo
B, then w is a qth power in k.

Proof. First we establish some notation. Let X be a nonsingular k-variety with rational
function field L. Let X; denote the set of points of X of codimension 1. Throughout
cohomology groups and sheafs will be for the étale topology. The sheaf of units on X
is denoted G,,. The group H*(X,G,,) is the cohomological Brauer group. If X is an
affine scheme (for example) it is known by the Gabber—Hoobler Theorem [5] that the
Brauer group B(X) of classes of Azumaya ('y-algebras is isomorphic under a canonical
embedding to the torsion subgroup of H2(X,G,). The group H'(X,Z/n) parametrizes
the cyclic Galois extensions of X with group Z/n.

Given units J and y in L*, let n be a positive integer that is invertible in L and let
{ be a primitive ath root of unity in L. The symbol algebra (,y), is the associative
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L-algebra generated by elements u©, v subject to the relations " = J, v" = y and
uv = {vu. The symbol algebra (d,7), is central simple over L and represents a class
in ,B(L).

Given a finite-dimensional central L-division algebra D, it is possible to measure the
ramification of D at any point x € X;. The local ring Oy, at x is a discrete valuation
ring. Let v be the discrete rank-1 valuation on L corresponding to the local ring Cy. .
Let k(x) denote the residue field at x. Assume that k(x) is perfect. (If k(x) is not
perfect, the following still works if (D : L) is prime to the characteristic of k(x).)
The theory of maximal orders [8, Section 5.7] associates with D a cyclic extension
L of k(x). Let L' be the completion of L and D" the division algebra component
of D®L" Let A be a maximal order for D" in the complete local ring Oy and let
A(x) = A®k(x) be the algebra of residue classes. Then A(x) is a central simple algebra
over L for some cyclic Galois extension L/k(x). The cyclic extension L/k(x) represents
a class in H'(k(x),Q/Z).

The assignment D — L induces a group homomorphism

B(L) — H'(k(x),Q/Z) (1

for each discrete rank-1 valuation v on L corresponding to a point x € X;. We call L
the ramification of D along x. The algebra D will ramify at only finitely many x € X.
Those x for which the cyclic extension L/k(x) is nontrivial make up the so-called
ramification divisor of D. So Eq. (1) induces a homomorphism

B(L) S [T H'(k(x),@/2). (2)

XEX|

Let n be a positive integer. If L and k(x) both contain 1/n and a primitive nth root
of unity {, the homomorphism (2) agrees with the tame symbol. On the symbol algebra
(6,y)n over L, the value of the homomorphism (1) is the cyclic extension L/k(x) which
is obtained by adjoining the nth root of

(= 1) MO §) 1 M(0) 3)

to k(x).
The proof of the next result of Grothendieck can be found in [6, ITI, Proposition 2.1]
or [7, p. 107, Example 2.22, case(a)].

Proposition 0.3. Let X be a regular integral scheme of dimension 1. Let L = L(X)
be the stalk at the generic point of X and X, the set of closed points of X. Suppose
that for each x € Xy, the residue field k(x) is perfect. Then there is an exact sequence

0 — AX(X,Gpn) = H(L,Gp,) = [] H'(k(x),Q/Z) — H (X, Gp)
XEX;

— H3(L,Gp ). (4)
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If we do not assume the residue fields are perfect, the sequence is still exact for
the g-primary components of the groups, for any prime g distinct from the residue
characteristics of X.

The first 2 groups in Eq. (4) are the Brauer groups of X and L, respectively. The
map a in (4) is “the ramification map” (2). The fact that in (4) roa is the zero map can
be thought of as a quadratic reciprocity law (for elements of order 2, or a gth degree
reciprocity law for elements of order ¢). But to have practical implications, one must
know that H'(k(x),Q/Z) —— H*(X,G,,) is injective for some x € X;. Lemma 0.4
states this is the case when X is the projective line over a field £ and x i1s a point
with residue field & -— for the proof, see [4].

Lemma 0.4. Let k be a field and n a positive integer invertible in k. Let x be a
closed point of X = P} with residue field k(x) = k. There exists a natural Gysin map

H (k(x).Q/Z) ——, (X, G,)
which is injective.

At last we are able to prove Lemma 0.2.

Denote by X the projective line over k, X = P} = Proj k[xo,x;]. Let L be the
field of rational functions on X. Dehomogenize with respect to x;, set y = xp/x; and
view L as k(y). Assume o is not a gth power in k. We will show that « is not a gth
power modulo f. The proof amounts to forcing a gth degree reciprocity law out of
Proposition 0.3 for the field &(v).

Consider the symbol algebra («, ), as a class in ,B(L). We show that (a,f), is
nontrivial (is not in ker a) and has nontrivial ramification. Let x be the closed point of
X where y = w. At the point x, the residue field is & and the ramification of (a, f§),
corresponds to the field extension k(1/w'/), which represents an element of order ¢ in
H'(k(x),Q/Z). By Lemma 0.4, H'(k(x),Q/Z) - H*(X,G,,) is injective. However
in Eq. (4), r o a is the zero map. So there is another closed point x” # x such that
the symbol algebra (a, ), ramifies at x’. Notice that (o, ), is unramified at “the point
at infinity” corresponding to x; = 0. This is because when x; = 0, o is a gth power
hence the tame symbol (3) is a gth power. At the point corresponding to the other
prime factor y — 1 of a, we see that § is equivalent to 1, hence is a gth power. So
(2, )¢ is unramified at y — 1 also.

The symbol algebra (a, ), ramifies only at primes on X corresponding to irreducible
factors of «f in k[y] since if A(y) is an irreducible polynomial in k[y] which does not
divide af3, in the henselian local ring at the point corresponding to A(y), the valuations
v(e) and v(f) are both equal to 0. By a process of elimination, the symbol algebra
(o, B)y necessarily ramifies at a point corresponding to a prime divisor g(y) of the
polynomial . Therefore, « is not a gth power modulo g(y). It follows that « is not a
gth power modulo . O
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We can now complete the proof of Theorem 0.1. For that, it suffices, by virtue of
Lemma 0.2, to prove the following: If K[y] is a CA-ring, then o is a gth power modulo
B, where the f(y) in B is still to be determined. Thus, let (4,B) be the g-dimensional
system given by

00 0 10
y 0 . 0 0 «
010 0 00

4=100 10 , B=|.

.. 100 o
(000001 0] 10 0

This system is controllable since (y,a) =1 in K[y]. Let

F:f11f12f13--~f1q
Hr o f2 3o o fg

be a generic 2 x g feedback matrix over K[y] and form the matrix xI, — (4 + BF’).
Thus,

x— fu -z ~fis - . —fig |
—(y+a-fa)x—a-foo—a-fi3.. . —0- fy
0 -1 X C. 0
xl, — (A +BF) =
0 0 . e 0
o0 0 L |

The characteristic polynomial of 4+ BF is the determinant of this matrix. Since we
are only interested in what happens modulo f = y + a - f21 (where, for now we have
chosen the “f(v)” to be f31), we have to compute the determinant 4 of the matrix

(x— fir  —fi2 —fis oo - —fig |
0 x—a-fo—a-fiz.. . —a-fy
0 —1 x .. 0
0 0 x 0

| 0 0 -1 x ]
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So,
(x—a- fon —a- fo3 —0t- foa .. . —oc-fzq-
-1 x 0 Co 0
0 ~1 X . 0
A= (x~ fi1)det
i 0 0 . Lo=1 x|

But, the determinant above is equal to

[x o0 o . . . 0]
-1 0 0
0 -1 x 0 0
(x — o+ f32)det
0 0 -1 x 0
L0 O 0 -1 x|
[ -1 0 0]
0 0 0
0 -1 x 0 0
4o - fo3 det
0O 0 00 -1 x O
| 0 0 -1 x_J)
(-1 x 0 0]
0 -1 0 0
0 0 X 0
—a - faq det 0 0 -1 0 + -
o 0 0 -1 «x 0
0 0 0 .. =1 x|

Consequently, it follows that 4 is given by

A== fi) [ —a fo)x P da o (=x077) — o o ]
== ) —a X — e fo3 X7 — e oy T ]
:x‘1~(fn+oz-f22)-x"“+(f11‘oz-f22—a-f23)-x‘1“2

ot fir 2 oy

Now, if K[y] is a CA-ring, there does exist a matrix F = [f;] such that char
poly(A+BF) = x? — o . This still holds modulo B = y+a- f1 (where now, we really
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have chosen “f(y)” !) The calculation above then shows that modulo 8 we have
that

S = —o- fa,
Jiro o fo3 = % fr = (o f)
Su-x-fz = o fu = o - faa (o f2),

Jiuro frg-ny = a- o = % faq = (=D~ ),
firrafy = —a = (=D f) (=1 o
= (o f2)! = —

I

when ¢ is odd. Hence, for ¢ odd, « is a gth power modulo S while for ¢ = 2,
fit=—a- fp and fi;-a- frn = —a. It follows that (¢ f,,)* = « and that o is a square
modulo . O

Remark 1. It is not difficult to construct an example of a field K which is closed under
taking nth roots for each positive integer n, but which is not algebraically closed. Let
S be the solvable closure of the field @ in the complex numbers. Since there exist
extensions of @ that are not solvable, S is not algebraically closed. To see that § is
closed under taking nth roots, we note that S clearly contains the abelian closure 4 of
S and so contains all nth roots of unity. If x is an element of S, then adjoining an nth
root of x to S gives an abelian extension of § and hence a solvable extension of Q.
It follows that x belongs to S.

Remark 2. Theorem 0.1 was known to be true under the assumption that K[y] was
an FC-ring (cf. [9, p. 96]).

Remark 3. A weak form of the converse of Theorem 0.1 is valid. Specifically, let K
be a field with w € K. Suppose that x" — w splits over K. Then x" — w is assignable
over K[y] for any reachable pair of dimension 7. The argument can be found in the
proof of Theorem 2 of [2]. Let x" —w = (x — ky)---(x — k,) for ky,... .k, € K.
In the notation of that proof, in the matrix C’, take : A = J; = .- = i, = 0,set
f=&—-k) - (x—ky1)and y = k432, B1 = kris,..-,Bs = k,. The characteristic
polynomial of the appropriately transformed pair is precisely x" — .
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