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Abstract 

If K is an algebraically closed field, then it is known that K[y] has the coefficient assignment 
property. Conversely, suppose that the field K has characteristic zero and contains the primitive 
nth roots of unity for all positive integers n. If K[y] has the coefficient assignment property, 
then K is closed under taking nth roots for all positive integers n. 

Let R be a commutative ring with (A,B) an n-dimensional controllable system over R. 

Thus, A is an n x n matrix, B is an n x M matrix, and the R-module generated by the 

colunms of the matrix [B, AB,. . . A”-‘B] is R”. 

If R is a field, then the controllability of a system is equivalent to any of the 

following three conditions: 

1. There exists a matrix F and a vector v such that Bv is a cyclic vector for the matrix 

A+BF. 

2. For each manic, nth degree polynomial f(x) E R[x], there exists a matrix F such 
that the characteristic polynomial of A + BF = f(x). 

3. For each collection {rl , . . . , r,,} of elements of R, there exists a matrix F such that 
the characteristic polynomial of A + BF = (x - r-1 ) . (x ~ rn). 

Over an arbitrary ring, these are no longer equivalent. Instead, for a system (A, B) 

over R, we have that (1) + (2) + (3) and that each of these conditions implies 

the controllability of the system. A ring R is called an FC-ring if condition (1) is 

satisfied for all controllable systems over R. A ring R is called a CA-ring if condition 

(2) is satisfied for all controllable systems over R. A ring R is called a PA-ring if 

condition (3) is satisfied for all controllable systems over R. Thus, any FC-ring is a 
CA-ring and any CA-ring is a PA-ring. 

* Corresponding author. E-mail: im@kafka.acc.fau.edu. 

0022-4049/96/$15.00 Copyright @ 1996 Elsevier Science B.V. All rights reserved 
SSDI 0022-4049(95)00142-S 



240 J. Brewer et 01. I Journal oj’ Purr and Applied Alyehru IV (1996) 239-246 

The most general class of rings having the FC-property is the class of local-global 

rings [l]. In a very real sense, these rings behave like local rings and essentially have 

the FC-property because fields do. The first nontrivial example of a ring having the 

CA-property but not the FC-property was given in [2, lo] where it was shown that if 

K is an algebraically closed field and y is an indeterminate, then K[y] is a CA-ring 

and if the characteristic of K is different from 0 , then K[y] is not an FC-ring. (This 

work was motivated by the problem of deciding whether or not the ring C[y] is an 

FC-ring if C is the field of complex numbers.) 

Now, it was shown in [3] that if R is the field of real numbers, then Rb] is not a 

CA-ring. These facts taken together suggest the following question: 

For which fields K is it true that K[y] is a CA-ring? 

In this paper, we establish some necessary conditions on K in order for K[y] to be 

a CA-ring. Even this small step requires considerable effort and leads us to believe 

that the problem is a difficult one. 

Our result is the following. 

Theorem 0.1. Let K be a field bcith y an indeterminate over K. Let q be a prime 

integer difSerent from the characteristic of K and suppose that K contains all qth 

roots of unity. If K[y] is a CA-ring, then K is closed under taking qth roots; that 

is, the map 4 : K - K dejined by 4(x) = x4 is surjective. In particular, suppose 

that K is a jield of characteristic 0 and that for each positive integer n, K contains 

all the nth roots of unity. If K[_v] is a CA-ring, then for each positive integer n, K 

is closed under taking nth roots. 

Proof. If o E K, w # 0 , set c( = (y - 1 )q-’ . (y - co) and /3 = y + M . f(y) , for 

f(v) some polynomial in K[y] to be determined later. We will apply the following 

surprisingly deep technical result. 

Lemma 0.2. Let k be aJieM with y an indeterminate over k. Let q be a prime integer 

different from the characteristic of k If Q E k, Q # 0, set CI = (y - l)q-’ . (y - 0)) 

and p = y + CI * f(y) , jbr f(y) some polynomial in k[y]. Zj’ a is a 9th power module 

8, then o is a 9th power in k. 

Proof. First we establish some notation. Let X be a nonsingular k-variety with rational 

function field L. Let Xi denote the set of points of X of codimension 1. Throughout 

cohomology groups and sheafs will be for the &ale topology. The sheaf of units on X 

is denoted G,. The group H2(X, US,) is the cohomological Brauer group. If X is an 

affine scheme (for example) it is known by the Gabber-Hoobler Theorem [5] that the 

Brauer group B(X) of classes of Azumaya 6x-algebras is isomorphic under a canonical 

embedding to the torsion subgroup of H’(X, G,). The group H’(X, Z/?z) parametrizes 

the cyclic Galois extensions of X with group Z/n. 

Given units 6 and y in L*, let n be a positive integer that is invertible in L and let 

5 be a primitive nth root of unity in L. The symbol algebra (6,~)~ is the associative 
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L-algebra generated by elements u, u subject to the relations u” = 6, v” = 1’ and 

uv = [au. The symbol algebra (6,~)~ is central simple over L and represents a class 

in ,B(L). 

Given a finite-dimensional central L-division algebra D, it is possible to measure the 

ramification of D at any point x E Xl. The local ring C”X,~ at x is a discrete valuation 

ring. Let v be the discrete rank-l valuation on L corresponding to the local ring C:_Y..~. 

Let k(x) denote the residue field at x. Assume that k(x) is perfect. (If k(x) is not 

perfect, the following still works if (D : L) is prime to the characteristic of k(x).) 

The theory of maximal orders [8, Section 5.71 associates with D a cyclic extension 

L of k(x). Let L” be the completion of L and D” the division algebra component 

of D 6 L”. Let A be a maximal order for D” in the complete local ring f!!iJ and let 

A(x) = A@Qx) be the algebra of residue classes. Then A(x) is a central simple algebra 

over L for some cyclic Galois extension L/k(x). The cyclic extension L/k(x) represents 

a class in H’(k(x),Q/Z). 

The assignment D H L induces a group homomorphism 

B(L) -+ H’@(x), Q/Z) (1) 

for each discrete rank- 1 valuation v on L corresponding to a point x E Xi. We call L 
the ramification of D along x. The algebra D will ramify at only finitely many x E X1. 

Those x for which the cyclic extension L/k(x) is nontrivial make up the so-called 

ramification divisor of D. So Eq. (1) induces a homomorphism 

B(L) 3 J--J H’(k(x),Q/0 (2) 
XEXl 

Let n be a positive integer. If L and k(x) both contain l/n and a primitive nth root 

of unity [, the homomorphism (2) agrees with the tame symbol. On the symbol algebra 

(6, y),, over L, the value of the homomorphism (1) is the cyclic extension L/k(x) which 

is obtained by adjoining the nth root of 

(_ 1)v(;)F(6)bF(y)lyv(b) (3) 

to k(x). 
The proof of the next result of Grothendieck can be found in [6, III, Proposition 2.11 

or [7, p. 107, Example 2.22, case(a)]. 

Proposition 0.3. Let X be a regular integral scheme of dimension 1. Let L = L(X) 
be the stalk at the generic point of X and Xl the set of closed points of X. Suppose 
that for each x E XI, the residue field k(x) is perfect. Then there is an exact sequence 

0 ---) H2(X, G,) + H’(L, S,,,) % fl H’(k(x),Q/Z) r, H3(X, G,) 
XEXl 

+ H3(L, Gl,L). (4) 
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If uve do not assume the residue jields are perjkct, the sequence is still exact for 

the q-primary components of the groups, for any prime q distinct from the residue 

characteristics of X. 

The first 2 groups in Eq. (4) are the Brauer groups of X and L, respectively. The 

map a in (4) is “the ramification map” (2). The fact that in (4) roa is the zero map can 

be thought of as a quadratic reciprocity law (for elements of order 2, or a qth degree 

reciprocity law for elements of order q). But to have practical implications, one must 

know that H’(k(x),Q/Z) 2 H3(X,Gm) is injective for some x E Xi. Lemma 0.4 

states this is the case when X is the projective line over a field k and x is a point 

with residue field k - for the proof, see [4]. 

Lemma 0.4. Let k be a field and II a positive integer invertible in k. Let x be a 

closed point qf X = Pk with residue field k(x) = k. There exists a natural Gysin map 

nH1(k(xW!@) -k H3(X,Gm) 

which is injective. 

At last we are able to prove Lemma 0.2. 

Denote by X the projective line over k, X = PL = Proj k[xo,xl]. Let f. be the 

field of rational functions on X. Dehomogenize with respect to x1, set _v = ~/xi and 

view L as k(y). Assume w is not a qth power in k. We will show that a is not a qth 

power modulo b. The proof amounts to forcing a qth degree reciprocity law out of 

Proposition 0.3 for the field k(y). 

Consider the symbol algebra (a, p& as a class in ,B(L). We show that (a,B), is 

nontrivial (is not in ker a) and has nontrivial ramification. Let x be the closed point of 

X where y = w. At the point x, the residue field is k and the ramification of (~(,,8)~ 

corresponds to the field extension k( l/w”q), which represents an element of order q in 

H’(k(x), Q/Z). By Lemma 0.4, H’(k(x), Q/Z) L H3(X,Gm) is injective. However 

in Eq. (4), r o a is the zero map. So there is another closed point x’ # x such that 

the symbol algebra (M,P)~ ramifies at x’. Notice that (a,/?), is unramified at “the point 

at infinity” corresponding to xi = 0. This is because when xi = 0, LY is a qth power 

hence the tame symbol (3) is a qth power. At the point corresponding to the other 

prime factor y - 1 of c(, we see that p is equivalent to 1, hence is a qth power. So 

(51, /?), is unramified at y - 1 also. 

The symbol algebra (c(, /I), ramifies only at primes on X corresponding to irreducible 

factors of c$ in k[y] since if h(y) is an irreducible polynomial in k[y] which does not 

divide c$, in the henselian local ring at the point corresponding to h(y), the valuations 

v(a) and Y(P) are both equal to 0. By a process of elimination, the symbol algebra 

(a,/& necessarily ramifies at a point corresponding to a prime divisor g(y) of the 

polynomial /I. Therefore, ti is not a qth power modulo y(y). It follows that c( is not a 

qth power modulo p. 0 
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We can now complete the proof of Theorem 0.1. For that, it suffices, by virtue of 

Lemma 0.2, to prove the following: If K[y] is a CA-ring, then CI is a qth power modulo 

/I, where the f(y) in /3 is still to be determined. Thus, let (A,B) be the q-dimensional 

system given by 

A= 

oo....o 
yo.. . .o 
OlO...O 

0010.. . 

. . . . . . 

. . . 1 0 0 

0000010 

> B 

1 0 

0 ci 

0 0 

. . 

. . 

. . 

0 0 

This system is controllable since (~,a) : = 1 in K[y]. Let 

F= hl h2 h3 . . hl.7 

h1 h2 h3 . . . hq 1 
be a generic 2 x q feedback matrix over K[y] and form the matrix ~1~ - (A + BF). 

Thus, 

~1~ - (A + BF) = 

x - fil -f12 -fi3 . -fill 

-(y+a~f21)X-cx31.h2 -x.fi3.. -c(.j& 

0 -1 X . . . 0 

. . . 

. 

0 0 . ..xo 

0 0 .,.-lx 

The characteristic polynomial of A + BF is the determinant of this matrix. Since we 

are only interested in what happens modulo j3 = y + CI . f& (where, for now we have 

chosen the “f (_v),’ to be f21), we have to compute the determinant d of the matrix 

x - fll -fi2 -f13 

0 X-g.f22 -a.f23 

0 -1 X 

. . -fiq 

. . --cI . fzq 

. . 0 

. . 

. . . 

0 0 . ..xo 
0 0 . ..-lx 
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so, 

A=@-fiI)det 

x - a. f22 -a. .f& -a. f24 . . -&e . f2, 

-1 X 

0 -1 

0 0 

But, the determinant above is equal to 

+cr . f& det 

-a . f24 det 

\ 

I 0 0 . 0 0 . 00-l . , . -1 x . x 0 . 
1 

-1 x 0 . . . 0 

0 -1 0 . . I 0 

0 0 x 0 . . 0 

0 0 -1 x . 0 

0 0 0 -1 x . 0 

. . . . . . 

0 0 0 .-lx 

Consequently, it follows that A is given by 

x 00.. 

-1 X 0 . . 

0 -1 x 0 . 

. . . 

. . . 

0 0 . -1 . 

LO 0 . . 0 

-1 0 0 . 

0 x 0.. 

0 -1 x 0 . 

. . . . . 

0 . . 0 

X . . . 0 

. -1 x 

0) 
. 0 

. 0 

. . 

. . 

x 0 

-1 x / 

. 0 

0 

0 

. 

1 f... 
A = (~-fi~)~[(x-u~f~~)~x~-~+u~f~~~(-x~-~)-,~f~,.x~-~+~~~] 

=(x-ffi~).[xq-'-..f22.xq-2-a.f~j.x e-3 _ a . h4 . x4-4 - . .] 

=xq-(fi~+a~f22)~xq-‘+(fi~~a~f22-a~f23)~xq-2 

+. . . + .fil a . f2q. 

Now, if K[_Y] is a CA-ring, there does exist a matrix F = [f;i] such that char 

poly(A + BF) = x4 - a . This still holds modulo /? = _V + c1 .j& (where now, we really 
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have chosen “f(y)” ! ) The calculation above then shows that modulo /3 we have 

that 

fll = --GL f22, 

fll . E . f22 = a.f23 =+ a.f23 = -(a. f22)2> 

fll . x. f23 = cl.f24 =+ @..f24 = (3 _fd39 

fil khcq-~, = ~~fi,, i . a . f2,q - (-1)4(r:f22)q-t, 

fll a.f2.y = --c( * (-1)4”(C(. f22)4 = (-1)q.E 

=+ (c(.f22)q = --x 

when q is odd. Hence, for q odd, c( is a qth power modulo p while for q = 2, 
ftl = --cI. f22 and fil a * f22 = --a. It follows that (a. f22)2 = c( and that a is a square 

modulo 8. 0 

Remark 1. It is not difficult to construct an example of a field K which is closed under 

taking nth roots for each positive integer n, but which is not algebraically closed. Let 

S be the solvable closure of the field Q in the complex numbers. Since there exist 

extensions of Q that are not solvable, S is not algebraically closed. To see that S is 

closed under taking nth roots, we note that S clearly contains the abelian closure A of 

S and so contains all nth roots of unity. If x is an element of S, then adjoining an nth 

root of x to S gives an abelian extension of S and hence a solvable extension of Q. 

It follows that x belongs to S. 

Remark 2. Theorem 0.1 was known to be true under the assumption that K[y] was 

an FC-ring (cf. [9, p. 961). 

Remark 3. A weak form of the converse of Theorem 0.1 is valid. Specifically, let K 

be a field with w E K. Suppose that x” - w splits over K. Then x” - w is assignable 

over K[y] for any reachable pair of dimension ri. The argument can be found in the 

proof of Theorem 2 of [2]. Let x” - o = (x - kl)...(x - k,) for kr,...,k, E K. 
In the notation of that proof, in the matrix C’, take : i = 3.1 = . . . = is = 0,set 

f = b - h)...(x - &+I) and Y = k+2, PI = kr+3, . . , bs = k,,. The characteristic 

polynomial of the appropriately transformed pair is precisely x” - cc). 
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