# When does the ring $K[y]$ have the coefficient assignment property? 

J. Brewer ${ }^{\mathrm{a}, *}$, T. Ford ${ }^{\mathrm{a}}$, L. Klingler ${ }^{\text {a }}$, W. Schmale ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Department of Mathematics, Florida Atlantic University, Boca Raton, FL 33431, USA<br>${ }^{\mathrm{b}}$ Department of Mathematics, C. von Ossietzsky University Oldenburg, W-2900 Oldenburg. Germany

Communicated by C.A. Weihel; received 3 January 1995; revised 28 August 1995


#### Abstract

If $K$ is an algebraically closed field, then it is known that $K[y]$ has the coefficient assignment property. Conversely, suppose that the field $K$ has characteristic zero and contains the primitive $n$th roots of unity for all positive integers $n$. If $K[y]$ has the coefficient assignment property, then $K$ is closed under taking $n$th roots for all positive integers $n$.


Let $R$ be a commutative ring with $(A, B)$ an $n$-dimensional controllable system over $R$. Thus, $A$ is an $n \times n$ matrix, $B$ is an $n \times m$ matrix, and the $R$-module generated by the columns of the matrix $\left[B, A B, \ldots A^{n-1} B\right]$ is $R^{n}$.

If $R$ is a field, then the controllability of a system is equivalent to any of the following three conditions:

1. There exists a matrix $F$ and a vector $v$ such that $B v$ is a cyclic vector for the matrix $A+B F$.
2. For each monic, $n$th degree polynomial $f(x) \in R[x]$, there exists a matrix $F$ such that the characteristic polynomial of $A+B F=f(x)$.
3. For each collection $\left\{r_{1}, \ldots, r_{n}\right\}$ of elements of $R$, there exists a matrix $F$ such that the characteristic polynomial of $A+B F=\left(x-r_{1}\right) \cdots\left(x-r_{n}\right)$.
Over an arbitrary ring, these are no longer equivalent. Instead, for a system ( $A, B$ ) over $R$, we have that $(1) \Rightarrow(2) \Rightarrow(3)$ and that each of these conditions implies the controllability of the system. A ring $R$ is called an $F C$-ring if condition (1) is satisfied for all controllable systems over $R$. A ring $R$ is called a $C A$-ring if condition (2) is satisfied for all controllable systems over $R$. A ring $R$ is called a $P A$-ring if condition (3) is satisfied for all controllable systems over $R$. Thus, any FC-ring is a CA-ring and any CA-ring is a PA-ring.
[^0]The most general class of rings having the FC-property is the class of local-global rings [1]. In a very real sense, these rings behave like local rings and essentially have the FC-property because fields do. The first nontrivial example of a ring having the CA-property but not the FC-property was given in [2,10] where it was shown that if $K$ is an algebraically closed field and $y$ is an indeterminate, then $K[y]$ is a CA-ring and if the characteristic of $K$ is different from 0 , then $K[y]$ is not an FC-ring. (This work was motivated by the problem of deciding whether or not the ring $C[y]$ is an FC-ring if $C$ is the field of complex numbers.)

Now, it was shown in [3] that if $\boldsymbol{R}$ is the field of real numbers, then $\boldsymbol{R}[\boldsymbol{y}]$ is not a CA-ring. These facts taken together suggest the following question:

For which fields $K$ is it true that $K[y]$ is a CA-ring?
In this paper, we establish some necessary conditions on $K$ in order for $K[y]$ to be a CA-ring. Even this small step requires considerable effort and leads us to believe that the problem is a difficult one.

Our result is the following.
Theorem 0.1. Let $K$ be a field with $y$ an indeterminate over $K$. Let $q$ be a prime integer different from the characteristic of $K$ and suppose that $K$ contains all qth roots of unity. If $K[y]$ is a $C A$-ring, then $K$ is closed under taking qth roots; that is, the map $\phi: K \longrightarrow K$ defined by $\phi(x)=x^{q}$ is surjective. In particular, suppose that $K$ is a field of characteristic 0 and that for each positive integer $n, K$ contains all the nth roots of unity. If $K[y]$ is a $C A$-ring, then for each positive integer $n, K$ is closed under taking nth roots.

Proof. If $\omega \in K, \omega \neq 0$, set $\alpha=(y-1)^{q-1} \cdot(y-\omega)$ and $\beta=y+\alpha \cdot f(y)$, for $f(y)$ some polynomial in $K[y]$ to be determined later. We will apply the following surprisingly deep technical result.

Lemma 0.2. Let $k$ be a field with $y$ an indeterminate over $k$. Let $q$ be a prime integer different from the characteristic of $k$. If $\omega \in k, \omega \neq 0$, set $\alpha=(y-1)^{q-1} \cdot(y-\omega)$ and $\beta=y+\alpha \cdot f(y)$, for $f(y)$ some polynomial in $k[y]$. If $\alpha$ is a qth power modulo $\beta$, then $\omega$ is a qth power in $k$.

Proof. First we establish some notation. Let $X$ be a nonsingular $k$-variety with rational function field $L$. Let $X_{1}$ denote the set of points of $X$ of codimension 1. Throughout cohomology groups and sheafs will be for the etale topology. The sheaf of units on $X$ is denoted $\mathbb{G}_{m}$. The group $H^{2}\left(X, \mathbb{G}_{m}\right)$ is the cohomological Brauer group. If $X$ is an affine scheme (for example) it is known by the Gabber-Hoobler Theorem [5] that the Brauer group $B(X)$ of classes of Azumaya $\mathscr{C}_{X}$-algebras is isomorphic under a canonical embedding to the torsion subgroup of $H^{2}\left(X, \mathbb{G}_{m}\right)$. The group $H^{1}(X, \mathbb{Z} / n)$ parametrizes the cyclic Galois extensions of $X$ with group $\mathbb{Z} / n$.

Given units $\delta$ and $\gamma$ in $L^{*}$, let $n$ be a positive integer that is invertible in $L$ and let $\zeta$ be a primitive $n$th root of unity in $L$. The symbol algebra $(\delta, \gamma)_{n}$ is the associative
$L$-algebra generated by elements $u, v$ subject to the relations $u^{n}=\delta, v^{n}=\gamma$ and $u v=\zeta v u$. The symbol algebra $(\delta, \gamma)_{n}$ is central simple over $L$ and represents a class in ${ }_{n} B(L)$.

Given a finite-dimensional central $L$-division algebra $D$, it is possible to measure the ramification of $D$ at any point $x \in X_{1}$. The local ring $\mathcal{O}_{X, x}$ at $x$ is a discrete valuation ring. Let $y$ be the discrete rank-1 valuation on $L$ corresponding to the local ring $\mathbb{O}_{X, x}$. Let $k(x)$ denote the residue field at $x$. Assume that $k(x)$ is perfect. (If $k(x)$ is not perfect, the following still works if ( $D: L$ ) is prime to the characteristic of $k(x)$.) The theory of maximal orders [8, Section 5.7] associates with $D$ a cyclic extension $L$ of $k(x)$. Let $L^{v}$ be the completion of $L$ and $D^{v}$ the division algebra component of $D \otimes L^{\nu}$. Let $A$ be a maximal order for $D^{y}$ in the complete local ring $\mathcal{O}_{X x}^{v}$ and let $A(x)=A \otimes k(x)$ be the algebra of residue classes. Then $A(x)$ is a central simple algebra over $L$ for some cyclic Galois extension $L / k(x)$. The cyclic extension $L / k(x)$ represents a class in $H^{1}(k(x), \mathbb{Q} / \mathbb{Z})$.

The assignment $D \mapsto L$ induces a group homomorphism

$$
\begin{equation*}
B(L) \rightarrow H^{1}(k(x), \mathbb{Q} / \mathbb{Z}) \tag{1}
\end{equation*}
$$

for each discrete rank-1 valuation $v$ on $L$ corresponding to a point $x \in X_{1}$. We call $L$ the ramification of $D$ along $x$. The algebra $D$ will ramify at only finitely many $x \in X_{1}$. Those $x$ for which the cyclic extension $L / k(x)$ is nontrivial make up the so-called ramification divisor of $D$. So Eq. (1) induces a homomorphism

$$
\begin{equation*}
B(L) \xrightarrow{a} \coprod_{x \in X_{1}} H^{1}(k(x), \mathbb{Q} / \mathbb{Z}) \tag{2}
\end{equation*}
$$

Let $n$ be a positive integer. If $L$ and $k(x)$ both contain $1 / n$ and a primitive $n$th root of unity $\zeta$, the homomorphism (2) agrees with the tame symbol. On the symbol algebra $(\delta, \gamma)_{n}$ over $L$, the value of the homomorphism (1) is the cyclic extension $L / k(x)$ which is obtained by adjoining the $n$th root of

$$
\begin{equation*}
(-1)^{v(\gamma) v(\delta)} \delta^{v(\gamma)} / \gamma^{v(\delta)} \tag{3}
\end{equation*}
$$

to $k(x)$.
The proof of the next result of Grothendieck can be found in [6, III, Proposition 2.1] or [7, p. 107, Example 2.22, case(a)].

Proposition 0.3. Let $X$ be a regular integral scheme of dimension 1. Let $L=L(X)$ be the stalk at the generic point of $X$ and $X_{1}$ the set of closed points of $X$. Suppose that for each $x \in X_{1}$, the residue field $k(x)$ is perfect. Then there is an exact sequence

$$
\begin{align*}
0 \rightarrow H^{2}\left(X, \mathbb{G}_{m}\right) & \rightarrow H^{2}\left(L, \mathbb{G}_{m, L}\right) \stackrel{a}{\longrightarrow} \coprod_{x \in X_{1}} H^{1}(k(x), \mathbb{Q} / \mathbb{Z}) \xrightarrow{r} H^{3}\left(X, \mathbb{G}_{m}\right) \\
& \rightarrow H^{3}\left(L, \mathbb{G}_{m, L}\right) . \tag{4}
\end{align*}
$$

If we do not assume the residue fields are perfect, the sequence is still exact for the q-primary components of the groups, for any prime q distinct from the residue characteristics of $X$.

The first 2 groups in Eq. (4) are the Brauer groups of $X$ and $L$, respectively. The map $a$ in (4) is "the ramification map" (2). The fact that in (4) roa is the zero map can be thought of as a quadratic reciprocity law (for elements of order 2 , or a $q$ th degree reciprocity law for elements of order $q$ ). But to have practical implications, one must know that $H^{1}(k(x), \mathbb{Q} / \mathbb{Z}) \xrightarrow{r} H^{3}\left(X, \mathbb{G}_{m}\right)$ is injective for some $x \in X_{1}$. Lemma 0.4 states this is the case when $X$ is the projective line over a field $k$ and $x$ is a point with residue field $k$ - for the proof, see [4].

Lemma 0.4. Let $k$ be a field and $n$ a positive integer invertible in $k$. Let $x$ be $a$ closed point of $X=\mathbb{P}_{k}^{1}$ with residue field $k(x)=k$. There exists a natural Gysin map

$$
{ }_{n} H^{1}(k(x), \mathbb{Q} / \mathbb{Z}) \xrightarrow{r}{ }_{n} H^{3}\left(X, \mathbb{G}_{m}\right)
$$

which is injective.
At last we are able to prove Lemma 0.2 .
Denote by $X$ the projective line over $k, X=\mathbb{P}_{k}^{l}=\operatorname{Proj} k\left[x_{0}, x_{1}\right]$. Let $L$ be the field of rational functions on $X$. Dehomogenize with respect to $x_{1}$, set $y=x_{0} / x_{1}$ and view $L$ as $k(y)$. Assume $\omega$ is not a $q$ th power in $k$. We will show that $\alpha$ is not a $q$ th power modulo $\beta$. The proof amounts to forcing a $q$ th degree reciprocity law out of Proposition 0.3 for the field $k(y)$.

Consider the symbol algebra $(\alpha, \beta)_{q}$ as a class in ${ }_{q} B(L)$. We show that $(\alpha, \beta)_{q}$ is nontrivial (is not in $\operatorname{ker} a$ ) and has nontrivial ramification. Let $x$ be the closed point of $X$ where $y=\omega$. At the point $x$, the residue field is $k$ and the ramification of $(\alpha, \beta)_{q}$ corresponds to the field extension $k\left(1 / \omega^{1 / q}\right)$, which represents an element of order $q$ in $H^{1}(k(x), \mathbb{Q} / \mathbb{Z})$. By Lemma $0.4, H^{1}(k(x), \mathbb{Q} / \mathbb{Z}) \xrightarrow{r} H^{3}\left(X, \mathbb{G}_{m}\right)$ is injective. However in Eq. (4), $r \circ a$ is the zero map. So there is another closed point $x^{\prime} \neq x$ such that the symbol algebra $(\alpha, \beta)_{q}$ ramifies at $x^{\prime}$. Notice that $(\alpha, \beta)_{q}$ is unramified at "the point at infinity" corresponding to $x_{1}=0$. This is because when $x_{1}=0, \alpha$ is a $q$ th power hence the tame symbol (3) is a $q$ th power. At the point corresponding to the other prime factor $y-1$ of $\alpha$, we see that $\beta$ is equivalent to 1 , hence is a $q$ th power. So $(\alpha, \beta)_{q}$ is unramified at $y-1$ also.

The symbol algebra $(\alpha, \beta)_{q}$ ramifies only at primes on $X$ corresponding to irreducible factors of $\alpha \beta$ in $k[y]$ since if $h(y)$ is an irreducible polynomial in $k[y]$ which does not divide $\alpha \beta$, in the henselian local ring at the point corresponding to $h(y)$, the valuations $\nu(\alpha)$ and $v(\beta)$ are both equal to 0 . By a process of elimination, the symbol algebra $(\alpha, \beta)_{q}$ necessarily ramifies at a point corresponding to a prime divisor $g(y)$ of the polynomial $\beta$. Therefore, $\alpha$ is not a $q$ th power modulo $g(y)$. It follows that $\alpha$ is not a $q$ th power modulo $\beta$.

We can now complete the proof of Theorem 0.1. For that, it suffices, by virtue of Lemma 0.2 , to prove the following: If $K[y]$ is a CA-ring, then $\alpha$ is a $q$ th power modulo $\beta$, where the $f(y)$ in $\beta$ is still to be determined. Thus, let $(A, B)$ be the $q$-dimensional system given by

$$
A=\left[\begin{array}{ccccccc}
0 & 0 & . & . & . & . & 0 \\
y & 0 & . & . & . & . & 0 \\
0 & 1 & 0 & . & . & . & 0 \\
0 & 0 & 1 & 0 & . & . & . \\
. & . & . & . & . & . & . \\
. & . & . & . & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & 0 \\
0 & \alpha \\
0 & 0 \\
. & . \\
. & . \\
. & . \\
0 & 0
\end{array}\right] .
$$

This system is controllable since $(y, \alpha)=1$ in $K[y]$. Let

$$
F=\left[\begin{array}{lllllll}
f_{11} & f_{12} & f_{13} & . & . & \cdot & f_{1 q} \\
f_{21} & f_{22} & f_{23} & . & . & \cdot & f_{2 q}
\end{array}\right]
$$

be a generic $2 \times q$ feedback matrix over $K[y]$ and form the matrix $x I_{q}-(A+B F)$. Thus,

$$
x I_{q}-(A+B F)=\left[\begin{array}{cccccc}
x-f_{11} & -f_{12} & -f_{13} & . & . & -f_{1 q} \\
-\left(y+\alpha \cdot f_{21}\right) & x-\alpha \cdot f_{22} & -\alpha \cdot f_{23} & . & . & -\alpha \cdot f_{2 q} \\
0 & -1 & x & . & . & 0 \\
. & . & . & . & . & . \\
. & . & . & & . \\
. & . & . & . & . & . \\
0 & 0 & . & . & x & 0 \\
0 & 0 & . & . & -1 & x
\end{array}\right] .
$$

The characteristic polynomial of $A+B F$ is the determinant of this matrix. Since we are only interested in what happens modulo $\beta=y+\alpha \cdot f_{21}$ (where, for now we have chosen the " $f(y)$ " to be $f_{21}$ ), we have to compute the determinant $\Delta$ of the matrix

$$
\left[\begin{array}{cccccc}
x-f_{11} & -f_{12} & -f_{13} & \ldots & . & -f_{1 q} \\
0 & x-\alpha \cdot f_{22} & -\alpha \cdot f_{23} & \ldots & . & -\alpha \cdot f_{2 q} \\
0 & -1 & x & \ldots & . & 0 \\
. & . & . & \ldots & . & . \\
. & . & . & \ldots & . & . \\
0 & 0 & . & \ldots & x & 0 \\
0 & 0 & . & \ldots & -1 & x
\end{array}\right]
$$

So,

$$
\Delta=\left(x-f_{11}\right) \operatorname{det}\left[\begin{array}{cccccc}
x-\alpha \cdot f_{22} & -\alpha \cdot f_{23} & -\alpha \cdot f_{24} & . & . & -\alpha \cdot f_{2 q} \\
-1 & x & 0 & . & . & 0 \\
0 & -1 & x & . & . & 0 \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
0 & 0 & . & . & -1 & x
\end{array}\right]
$$

But, the determinant above is equal to

$$
\begin{aligned}
& \left(x-x \cdot f_{22}\right) \operatorname{det}\left(\left[\begin{array}{ccccccc}
x & 0 & 0 & . & . & . & 0 \\
-1 & x & 0 & . & . & . & 0 \\
0 & -1 & x & 0 & . & . & 0 \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
0 & 0 & . & . & -1 & x & 0 \\
0 & 0 & . & . & 0 & -1 & x
\end{array}\right]\right) \\
& +\alpha \cdot f_{23} \operatorname{det}\left(\left[\begin{array}{ccccccc}
-1 & 0 & 0 & . & . & . & 0 \\
0 & x & 0 & . & . & . & 0 \\
0 & -1 & x & 0 & . & . & 0 \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
0 & 0 & 0 & 0 & -1 & x & 0 \\
0 & 0 & . & . & . & -1 & x
\end{array}\right]\right) \\
& -\alpha \cdot f_{24} \operatorname{det}
\end{aligned}\left(\left[\begin{array}{ccccccc}
-1 & x & 0 & . & . & . & 0 \\
0 & -1 & 0 & . & . & . & 0 \\
0 & 0 & x & 0 & . & . & 0 \\
0 & 0 & -1 & x & . & . & 0 \\
0 & 0 & 0 & -1 & x & . & 0 \\
. & . & . & . & . & . & . \\
0 & 0 & 0 & . & . & -1 & x
\end{array}\right]\right)+\cdots .
$$

Consequently, it follows that $\Delta$ is given by

$$
\begin{aligned}
\Delta= & \left(x-f_{11}\right) \cdot\left[\left(x-\alpha \cdot f_{22}\right) \cdot x^{q-2}+\alpha \cdot f_{23} \cdot\left(-x^{q-3}\right)-\alpha \cdot f_{24} \cdot x^{q-4}+\cdots\right] \\
- & \left(x-f_{11}\right) \cdot\left[x^{q-1}-\alpha \cdot f_{22} \cdot x^{q-2}-\alpha \cdot f_{23} \cdot x^{q-3}-\alpha \cdot f_{24} \cdot x^{q-4}-\cdots\right] \\
= & x^{q}-\left(f_{11}+\alpha \cdot f_{22}\right) \cdot x^{q-1}+\left(f_{11} \cdot \alpha \cdot f_{22}-\alpha \cdot f_{23}\right) \cdot x^{q-2} \\
& +\cdots+f_{11} \cdot \alpha \cdot f_{24} .
\end{aligned}
$$

Now, if $K[y]$ is a CA-ring, there does exist a matrix $F=\left[f_{i j}\right]$ such that char $\operatorname{poly}(A+B F)=x^{q}-\alpha$. This still holds modulo $\beta=y+\alpha \cdot f_{21}$ (where now, we really
have chosen " $f(y)$ "! The calculation above then shows that modulo $\beta$ we have that

when $q$ is odd. Hence, for $q$ odd, $\alpha$ is a $q$ th power modulo $\beta$ while for $q=2$, $f_{11}=-\alpha \cdot f_{22}$ and $f_{11} \cdot \alpha \cdot f_{22}=-\alpha$. It follows that $\left(\alpha \cdot f_{22}\right)^{2}=\alpha$ and that $\alpha$ is a square modulo $\beta$.

Remark 1. It is not difficult to construct an example of a field $K$ which is closed under taking $n$th roots for each positive integer $n$, but which is not algebraically closed. Let $S$ be the solvable closure of the field $\boldsymbol{Q}$ in the complex numbers. Since there exist extensions of $\boldsymbol{Q}$ that are not solvable, $S$ is not algebraically closed. To see that $S$ is closed under taking $n$th roots, we note that $S$ clearly contains the abelian closure $A$ of $S$ and so contains all $n$th roots of unity. If $x$ is an element of $S$, then adjoining an $n$th root of $x$ to $S$ gives an abelian extension of $S$ and hence a solvable extension of $Q$. It follows that $x$ belongs to $S$.

Remark 2. Theorem 0.1 was known to be true under the assumption that $K[y]$ was an FC -ring (cf. [9, p. 96]).

Remark 3. A weak form of the converse of Theorem 0.1 is valid. Specifically, let $K$ be a field with $\omega \in K$. Suppose that $x^{n}-\omega$ splits over $K$. Then $x^{n}-\omega$ is assignable over $K[y]$ for any reachable pair of dimension $\dot{n}$. The argument can be found in the proof of Theorem 2 of [2]. Let $x^{n}-\omega=\left(x-k_{1}\right) \cdots\left(x-k_{n}\right)$ for $k_{1}, \ldots, k_{n} \in K$. In the notation of that proof, in the matrix $C^{\prime}$, take : $\lambda=\lambda_{1}=\cdots=\lambda_{s}=0$, set $f=\left(x-k_{1}\right) \cdots\left(x-k_{r 11}\right)$ and $\gamma=k_{r \mid 2}, \beta_{1}=k_{r+3}, \ldots, \beta_{s}=k_{n}$. The characteristic polynomial of the appropriately transformed pair is precisely $x^{n}-\omega$.

## References

[1] J. Brewer, D. Katz and W. Ullery, Pole assignability in polynomial rings, power series rings and Prüfer domains, J. Algebra 106 (1987) 265-286.
[2] J. Brewer, L. Klingler and W. Schmale, $C[y]$ is a CA-ring and coefficient assignment is properly weaker than feedback cyclization over a PID, J. Pure Appl. Algebra 97 (1995) 265-273.
[3] R. Bumby, E. Sontag, H. Sussman and W. Vasconcelos, Remarks on the pole-shifting problem over rings, J. Pure Appl. Algebra 20 (1981) 113-127.
[4] T.J. Ford, Division algebras and quadratic reciprocity, preprint.
[5] O. Gabber, Some theorems on Azumaya algebras, in: Groupe de Brauer, Séminaire, Les Plans-sur-Bex, Suisse 1980, Lecture Notes in Mathematics, Vol. 844 (Springer, Berlin, 1981) 129-209.
[6] A. Grothendieck, Le groupe de Brauer I, II, III, in: Dix Exposés sur la Cohomologie des Schémas (North-Holland, Amsterdam, 1968) 46-188.
[7] J. Milne, Etale Cohomology, Princeton Mathematical Series, Vol. 33 (Princeton Univ. Press, Princeton, NJ, 1980).
[8] O.F.G. Schilling, The Theory of Valuations, Mathematical Surveys, Vol. 4 (American Mathematical Society, Providence, RI, 1950).
[9] W. Schmale, Feedback cyclization over certain PID's, Int. J. Control 31 (1988) 91-97.
[10] W. Schmale, Three-dimensional feedback cyclization over C $\boldsymbol{C} \boldsymbol{y}]$, Systems Control Lett. 12 (1989) 327-330.


[^0]:    * Corresponding author. E-mail: im@kafka.acc.fau.edu.

